AD-A134 3532

UNCLASSIFIED

AN ACCURATE THEORY AND SIMPLE FOURTH ORDER GOVERNING

EQUATIONS FOR ORTHOT.  (U) WISCONSIN UNIV-MADISON

MATHEMATICS RESEARCH CENTER S CHENG ET AL
MRC-TSR-2588 DAAG29-88-C-0041

ocT 83
F/G 1271




0t
el laln e

e

1.6
==
E=——]

FEE!
HEEEN

H E EEEEEER

4.
L 1T
NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART

izs flis

10
ll==

i

T ———
g te et e gty
B DM

-
o




MRC Technical Summary Report #2580

R

AN ACCURATE THEORY AND SIMPLE FOURTH
ORDER GOVERNING EQUATIONS FOR ORTHOTROPIC
AND COMPOSITE CYLINDRICAL SHELLS

”»

- AL 44 554

N W SRS w2 -

Shun Cheng and F. B. He

70

Mathematics Research Center
University of Wisconsin—Madison
610 Walinut Street

Madison, Wisconsin 53705

October 1983

(Received May 26, 1983)

Approved for public release
Distribution unlimited

DTIC FILE COPY

sponsored by

U. S. Army Rescarch Office
P. O. Box 12211

Research Triangle Park
North Carolina 27709




i B,

AL A, T P,

P AL

-

; ooy,
\”ic rep P '
N .

UNIVERSITY OF WISCONSIN-MADISON L - —
MATHEMATICS RESEARCH CENTER —

AN ACCURATE THEORY AND SIMPLE FOURTH ORDER GOVERNING
EQUATIONS FOR ORTHOTROPIC AND COMPOSITE CYLINDRICAL SHELLS

Shun Cheng* and F. B. He*

Technical Summary Report #2580
October 1983 M ‘ '

(\ ABSTRACT
N

A pair of complex conjugate fourth-order differential equations that
govern the deformation of orthotropic circular cylindrical shells is
presented. As shown in the paper, this pair of equations is as accurate as
equations can be within the scope of the Kirchhoff assumptions. Also
presented for the first time are several pairs of accurate and simple fourth
order equations which can be systematically and explicitly deduced from the
previously mentioned pair of equations. Because of their accuracy and
simplicity, these simple equations are of practical importance. The advantage
in applying those equations presented herein is that their solutions can be
easily found in simple closed forms. This considerably simplifies calcula-
tions for solving problems of orthotropic and laminated composite cylindrical
shells. Unlike other known equations in the literature, their general solu-

tions remain unknown because of the algebraic complexities involved.
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. Introduction

’S Considerable attention has been devbted to the study of isotropic cylin-

" drical shells. Literature on this subject is quite extensive. In contrast,
relatively 1ittle work has been done on the formulation of the basic equa-

ég tions for orthotropic cylindrical shells, although they are frequently

i; employed as structural elements in industry [1-7]. Examples of orthotropic

; shells include laminated composite, perforated and stiffened cylindrical

i‘ shells whose material behavior can be considered as orthotropic. Composite

v% shells (5,6,7) constitute an example of great practical importance.

.; As is known in the 1iterature, the classical shell theory is based on

§ ' the same basic assumptions emp]oxpd‘in the theory of thin plates, known as

Fé Kirchhoff assumptions. Since the inception of Love's first approximation,

3o further simplifications or approximations beyond these basic assumptions

3 have been introduced in developing the theory of thin shells. As the abundance

3 of literature indicates, many versions of shell theories have been formulated,

N each depending on different versions of the varfous approximations. This has

ij confronted engineers as well as researchers with a controversial problem with

regard to the consistency of the theory, shortcomings of the derivations and
accuracy of the resulting equations. Many sets of resulting equations have

'g been proposed for isotropic shells [8-12] and especially, due to their

f' importance in application and the fact that they display nearly every type

;; of behavior found in general shell theory, for cylindrical shells [8-16].

% . Several publications are 1isted in the reference. Others may be

f found by consulting these references. As for orthotropic cylindrical shells,

3; *Department of Engineering Mechanics, University of Wisconsin-Madison,

2 Madison, WI 53706

- Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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two types of basic equations, corresponding either to Fligges's or Donnell's

equations for isotropic shells, have been formulated in the 1iterature [1-3,6].

In either case, a resulting single eighth-order differential equation maybe
deduced. However, the eighth-order equation for orthotropic shells is more
complicated than the corresponding ones for isotropic shells. A common
difficulty with these eighth-order equations in isotropic or orthotropic
shell theory is that their general solutions remain unknown because of the
algebraic complexities involved. For orthotropic cylindrical shells, even
the simpler eighth-order equation based on Donnell approximations as seen in
[2] suffers from the same complexity. Although a fourth-order equation is
presented in [3], this equation does not yield accurate and dependable
solutions as is illustrated through the comparison made between numerical
results from analytical solutions and from experimental diata presented in
the same paper [3]). In computing the characteristic roots arising from
solving these eighth-order equations by means of eigenfunctions, it is found
that the two large roots and the two small roots in the same set of solutions
for the characteristic equation are far apart and of different orders of
magnitude. This makes the computation more tedious and time-consuming,
‘even with the present day numerical techniques.

Recently a general theory for thin isotropic shells was developed by
Markov [17]. It is a consistent theory, since it makes no simplifications
or approximations beyond a clear set of fundamental hypotheses. Other
advantages of the method of derivation as applied to shells of general
curvature have also been illustrated in [17].

In the present paper, a pair of complex conjugate fourth-order partial
differential equations that govern the deformation of orthotropic circular
cylindrical shells is proposed. This pair of equations is deduced from a
set of basic equations which is based on the following Kirchhoff hypotheses:

(a) The transverse normal stress is negligibly small and
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3.

(b) Normals to the middle surface of the shell remain normal to it and
undergo no change in length during deformation.
The set of basic equations is exact in the sense that in deriving these equa-
tions all terms have been retained without introducing further simplifications
or approximations beyond these fundamental hypotheses. Even those terms which
are of higher-order are kept since they can be summed in closed form.
Because the pair of equations deduced herein is complex conjugates,
only one of the equations needs to be considered. Further, closed form solu-
tions of the characteristic equations that arise from solving the pair of
governing equations by means of eigenfunctions can be easily obtained. The
technique used is an extension of the one for isotropic shells presented in
[15,16]. From the pair of equations, a number of simplified fourth-order
governing equations can be systematically and explicitly deduced, as shown
in the paper. These fourth-order equations for orthotropic cylindrical shells
are new in the literature and of definite technical importance because these
equations can be easily solved in closed forms and yet retain practically
‘the same accuracy as the original eighth-order equation.

Basic Equations

In accordance with the fundamental hypotheses stated previously, the
following basic equations can be deduced for orthotropic circular cylindrical

shells., Let a be the radius of the midsurface of the shell, x, y, z the

axial, circumferential and radial coordinates and o, B the dimensionless
midsurface coordinates along lines of curvatures (a = g-, B = f). The three

displacement components Uys Ugs and u_, of an arbitrary point of the shell

z
can be expressed in terms of midsurfae displacements u, v, and w as

follows [8,16]
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1 ,ow ]
a "2 g V)93

The stress-strain relations for orthotropic materials [18,19] are
& Ea
Oy * T—:—;;—;'(e +v.e B) » Og* T_:_C;CE (vzea+e8) ’
(2)

TGB = GeuB

where E]. E2 are thé moduli of elasticity along the principal directions
o and B, respectively, G is the shear modulus which characterizes the
change of angles between principal directions o and B8, v} = Vgq is the
Poisson's ratio which characterizes the decrease in a-direction due to
tension applied in B-direction, and v, = qu is the Poisson's ratio which
characterizes the decrease in B-direction due to tension applied in a-direc-

tion. Among these material constants there exists the relation [18,19]:

Eyvy = Exvp (3)
‘The components of strain at an arbitrary point of the shell are related

to the midsurface displacements by [8,15,16]

2 2
ea'%(?%'f-:;%)’ eg =3 G5+ w - _(a_zfz')'(_f"")
(4)
1 pou , 9 4 4}
ez lEt 2 aaas) G aaas)]
The bending ("a'"s) and twisting (1) strains are
2 2
.. 3w .. (v
ﬂa :2';;2' ' nB :2'(3;2""") y T '—2( ZaaaB)
(5)

Let h be the wall thickness, Kl' K2 the extensional rigidity, D]. D2 the

flexural rigidity




.........................................

" E]h Ezh hz hz
17 TRy, ety itk Rtk (6)
and define
E G(1-vyv,)
2 172
k==, k, &8 ———=Xt_ 7
E, " 1 E, (7)
Let Na’ NB be the normal stress resultants, Su. S8 the shear stress

resul tants, "u' "B the bending moments, MuB’ "Ba the twisting moments, and

Qa’ QB the transverse stress resultants [15]. These are stress resultants
(N, S, Q) and couples (M) per unit length of the middle surface and are

related to the midsurface displacements through the stress-strain relations

as
K 2
1 ru 29
N3 B "l(as”‘)"’p:"
A T I TR Y
e 38 Vpag tWte ;2- + w)(1+468)]
2
. W v 2 3w _
sa a [3B+aa'c (8a )]
Gh (3u, v, 2 au
B a C *wlte (3038 ?B-)(HG)] (8)
N - 3 v Dy ¢ 3% 2%w
-—2'[ *Vy 38 - (—7*\’] -—2')]. -;2-[(;2-+u)(1+6)+v2;2-]
( ) [ +2 B 5
Mys "2’ 30.38 , ]2 3098 ' ( aaas)]
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2 1 3v o'W . ow 1 o'W
Q = = [2 - (W) (= + 33) - (2 —+v,) ]
8 :5 kaa ;8_3- 98 k 2 8a238
in which
2. K
12a2
and !
(tanh™ V3 ¢c- /3 ¢)
§r g 1 =9 p (T g (),
The equations of static equilibrium are
oN 9S oN oS
WQ+TB§+ax-0’TB§+8a+QB+aY=O'
3Q 30
a B -
Ng- % -3 " 320 (9)
oM oM oM oM
. aB 8 - -
3 -3 %0 S5 -3 aq, = 0

in which X, Y and Z are surface loads per unit area in x, y and 2z

directions, respectively.

Pair of Accurate Complex Conjugate Fourth-Order Equations for Normal Deflection

Substituting equation (8) into equation (9), a system of three differ-
ential equations is obtained for the three basic functions. This system is
presented in Table 1 and possesses a symmetrical structure. The three linear
partial differential equations with constant coefficients can be reduced to

3 single differential equation of higher order that is more convenient to

solve and/or analyze with regard to the present problem. These three equations
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présented in Table 1 shall be considered as algebraic equations in u, v, and
w having coefficients which are constants (elastic constants and cz) and

the symbols of differentiations. Let Do be the 3x3 determinant of Table 1
and calculate its cofactors D]]. 012. ceee 033. Let

us Dﬂ¢i , V = °1z¢1 s W= Di3¢1 (sumon 1, i =1,2,3) (10)

and substitute these expressions in the three equations in Table 1. Then, in

accordance with the theory of linear algebra

1-vv 2
D°¢1 + ——ETF—G xi =0, (i = 1,2,3) (M)

are obtained, in which x] = X, X2 =Y, x3 = Z. If only a normal surface
load Z 1is applied on the shell, ¢] and ¢2 can be set equal to zero in
equations (10) and (11). Calculating cofactors 031. D3ps D3g and Do from
Table 1 and replacing ¢3 by -fL , the following are obtained from

1
equations (10) and (11)

2 2 4 4 4
3 ;. 3 3 209 3 3
Uu==—1{k—-v +c[.._._.-k—_—+(2|(-8k -4v,) ]}q,
da a2 T 1 52 s gt V1T 5alagl
3 32 2, 2 2, 3 : 3 (12)
v == {-k Vi - —~—(k-v ky=V7) =5+ 2 [—-z-+ (2k,+vy) —-2——2]} )
L 98 kl L Ja oa 1A 9a a8
4 4 4 4
N 2. 3 3 2. 3
w= [Zs + o~ (k-2v, Kk, -VE) + K + 4c°k 14 (13)
n q VU0 50%8 gt LR IO
8 8 8 8 8 6
1 3 3 3 3 2 3 3
D o= {—5+2K + k + 2kK +k + 2v
207 38 20508 2 adag 302380 a8 1 b
2
6 6 6 (k-vy) 4
3 3 2 3 \ 2. 2
+k + 2k(2K=~v,) + 2k + [ + 4k - 3v] =
2 3,8, 17 5alag? 285 ¢ 17 342
4 4 4
2 23 a
+ 2k(K-v, ) + K }o=5%1 (14)
1 anfag? agt Dy

k 2
in which K = ff; (l-v]vz) + Zk] ’ k2 = 6k + 4v](K-4k]) - 8v] (15)
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The constant coefficients in equations (12), (13) and (14) may contain co-
efficients higher than those shown (of the order c2 or higher). These
coefficients have been omitted since, in thin shell theory, g-g %% , thus
cz < leo'4 is a very small number. The complete expression of Do is
given in the Appendix. Comparison of the magnitude of the coefficients

of the terms which were omitted with the coefficients of the terms (having
the same partial differentiations) which were retained in equation (14)
reveals that these omitted terms are truly of smaller orders of magnitude.
This fact has been further verified through the actual computation of thes-
coefficients using available numerical data drawn from elastic constants o
many orthotropic materials. In Table 2, the elastic constants of a few
materials are presented. Thus, equation (14) is an accurate governing
equation for orthotropic cylindrical shells because this equation is derived
from the basic hypotheses without introducing further approximations in its
derivation except that, as just stated, some negligibly small terms have been
omitted. These small terms have been totally dropped in all the known equa-
tions of orthotropic shells. In some publications, even certain terms in
equation (14) are neglected. In the following analysis, some of these
negligibly small terms will be retained so that equation (14) can be reduced
to a pair of fourth order complex conjugate equations. This not only
tremendously simplifies calculation of the roots of the charécteristic
equation which arise from solving the equation by separation of variables
but 1t also facilitates obtaining solutions in simple explicit forms. As
stated previously, finding solutions of equation (14) in explicit forms is
almost prohibitively difficult due to the algebraic complexity involved.

In addition to keeping some small terms, the following approximate relation as

given in [20,21] is employed:
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Table 2 Mechanical Properties of Materials
Species k = EZ/E] G/E] 2 Vo
Glass/epoxy 0.3333 0.1666 0.0833 0.2500
Boron/epoxy 0.1000 0.0333 0.0300 0.3000
Graphite/epoxy 0.0250 0.0125 0.0063 0.2500
Douglas-fir 0.0500 0.0780 0.0220 0.4490
Table 3 Characteristic Roots (w = echosna)
(Boron/Epoxy)
1/c n Equation P1» P2 P3s Py
(14) 0.009297 + 0.008429i 0.00"079 + 1.0000001
(18) 0.009278 + 0.0084141 0.000n79 + 1.000000i
(24) 0.009278 + 0.0084141 0.000079 + 1.0000001
50 0. 001 (27) 0.008900 + 0.008843i 0.000079 + 0.9999y7i
) (25) 0.008872 + 0.008871i n.000079 + 0.999992i
(23) 0.008872 + 0.008871i 0.000079 + 0.999997i
(26) 0.103515 + 0.042850i 0.042877 + 0.103450i
(29) 0.103496 + 0.042858i 0.042869 + 0.103469i
(14) 0.093577 + 0.083514i 0.007852 + 1.000139i
(18) 0.093411 + 0.083407i 0.007857 + 1.000138i
(24) 0.093414 + 0.0834021 0.007857 + 1.000138i
50 0.010 (27) 0.089696 + 0.087736i 0.007870 + 0.999889i
' (25) 0.089463 + 0,0880641i 0.007883 + 0.999372i
(28) 0.089420 + 0.088024i 0.007872 + 0.999839i
(26) 0.328262 + 0.135123i 0.135969 + 0.326220i
(29) 0.327653 + 0.135377i 0.135719 + 0.326828i
(T4) 3.217938 + 1.376923i 1.331418 + 3.327954i
(18) 3.217917 + 1.376970i 1.331469 + 3.327934i
(24) 3.217926 + 1,376965i 1.331472 + 3.327925i
5000 0.100 (27) 3.211572 + 1.380148i 1.329567 + 3.333750i
: (25) 3.217595 + 1.377760i 1.332245 + 3.327594i
(28) 3.211551 + 1.380201i 1.329618 + 3.333728i
(26) 3.282622 + 1.351234i 1.359694 + 3.262197i
(29) 3.276528 + 1.353769i 1.357185 + 3.268280i
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in which ME]EZ and /v1v2 are geometric mean values for the modulus E

and Poisson's ratio v, respectively. From equations (3), (15) and (16),

we obtain
2k] = vEll-Jb]vz). K = 2(2k]+v])=2¢F} k2 = 6k (17)
8
. . . . ]
In equation (14), replacing the coefficient kz of the middle term ;;Z;EI

(only in this term) by 6k and keeping some of these omitted small terms,
from equations (13) and (14), the governing differential equation for normal

deflection w may be written as

4 .4 4 4
= 3 1 2, 9 3
LLw=23 [+ (k-2v,k,=V5) +k25] 12 (18)
D, 24 K LI IR L By 26
in which
4 4 4 2 2
3 ) 3 3 )
L=—=—+K + k{ + + )
08 s0agt a8 sl 3
2 4 4 4 2 2
S 3 ) 3 3 3
+ i[— =5 + ¢,(k + k, —5—5 t+ k + kg — + k )]
T e N Y Y 2 YL I I I

(19)

and L[ is the complex conjugate linear differential operator of L, i = /<T and

C 1
¢, = —m™m— , k, = v, ~k , k, =3z (k,-2kK-2k) ,
(20)
ke = k(K-k-v;) , ke =+ (4k-k2-3\2)
5 17+ %62 1
As will be shown later, the replacement of coefficient kz of the middle
term in equation (14) by 6k has only a negligibly small effect on the solu-
tions of the problem, although the expression (16) is merely an approximate

relation and may not be as accurate as is the corresponding relation for

isotropic materials. In equation (19), it is seen that the last term

2 2
3

C]ks ;—f is very small as compared with the term g—
o

hence can be dropped. This should not yield any noticeab)
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effect on the accuracy of the equation as will be further elaborated later.

The homogeneous solutions of equation (18) are obtained from

tw=0, [w=0 (21)
From equations (12) and (13), we can express u and v in terms of w [15].
Equation (18) reduces to the same governing equation for isotropic cylindrical
shells as deduced in [19. Using the relation (16), equation (18) can also be
reduced to the orthotropic plate equation [19] as the radius of the shell

goes to infinity.

Solutions by Eigenfunctions

It may be shown that homogeneous equation (21) and suitable boundary
conditions are satisfied by making use of the following solution when the

eigenfunctions are trigonometric along a generator:

w = ePBeosna (22)

in which n = E%E s M is an arbitrary integer, £ represents the length of
the shell and e 1is the base of natural logarithms. When the eigenfunctions are

trigonometric in the circumferential direction, w can be taken as

cosnp (23)
in which n is a real number. It is an integer value when the cylinder is
closed and a noninteger value when the shell is open. Substituting expres-
sions (22) and (23) into the governing equation (21) yields characteristic
equations for the determination of the roots p. Four complex roots are
obtained and the other four roots are the complex conjugate numbers to these
four roots. The characteristic equations are quadratic equations in p2.

Hence solutions of the present problem can be easily found in closed forms.
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Simple Equations

The accurate fourth-order equation (21) can be used to obtain a number
of simplified equations which are new in the literature and are of importance
in practice. Considering the actual values of elastic constants of various
orthotropic materials and the smallness of c2. it can be easily shown that
the 2mst term in equation (19) c]ksf;; is much smaller than the term
%i’ , hence this term can be dropped in equation (19) as previously stated.
When the same considerations are applied, terms with coefficients k3, k4 and
ks in equation (19) can also be neglected because they are of a smaller order
of magnitude in comparison with other terms which have the same partial
differentiations in the equation. Dropping these terms in equation (19)

yields the following simplified equation
4 4 4 2 2 2

) 3 ) 2 3 i 9
w = [ + K + k + k( + =) t — =] w=0 (24)
208 202382 8% 202 o8 ©1 add

If, in equation (24), new dimensionless coordinates & and ¢ are introduced

by stretching the variables a and B8 such that a=/c'] £ and B = /c'] n,
2 2
the fourth term and the fifth term in equation (24) become kc21 (—27 + —§—2-).
ok an
The fourth term is small as compared with the last term E]——a-z- and hence
1 93¢

has 1ittle effect on the characteristic roots. Therefore this term can be

dropped in equation (24) and another simple equation

4 4 4 2 . 2
3 3 3 ¥ i
Lw = ( + K + k + k + — Yw=0 (25)
37 3alag a8 28 €1 add

is obtained. If the fourth term in equation (25) is also dropped, one

obtains
4 4 4 . .2
] P 9 i 9
Lw = ( + K + k + — )w=0 (26)
300 302982 aez I
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Unlike others presented in this section, the preceding egquation is
obtained by dropping a term in equation (25) without the usual presence in
that equation of a similar term having a much larger coefficient with which,
as a jJustification for the resulting simplification, the dropped term can be
compared. This procedure unavoidably affects the accuracy of the equation,
as will be seen in the next section.

In deducing the fourth-order equation (21) from the original equation (14)
oniy the coefficient k2 of the term ;;%;EZ in equation (14) is replaced by

its approximate value 6k (17); If the same approximation is also used for the

coefficient K in equation (19), then equations (24), (25) and (26) become

. A2
4 i 3
(v + kv2 t— —=)w=0 (27)
0 c] aa2
2 . a2
4 ] i 9
(V! +k25t—")w=0 (28)
0 382 4 aaz
. W2
4 i 9
(V. +t ——"—=)w=0 (29)
0 < aaz

2 2 2 2 E

: . 9 ) 9 9 2 h
in which v2=—+/k'—,v2=——+ k == and ¢, = .
©  3a? a8 sl a8 ' 2a/3KTT v,

By substituting the differential operators L given by equations (24), (25)
and (26) into the left-side of equation (18), the complete version of these

equations including the load term can be written as

4 4 4 4

- 3 3 3
Liw=2 [+ 2(K-2Kky-v,) y k2] 2 (30)
D, “3f L P T

in which L represents any one of the three linear differential operators of
equations (24), (25) and (26). Similarly the complete version of equations
(27), (28) and (29) are

L[w=g—v i (31)

S
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in which L represents any one of the three linear differential operators
of equations (27), (28) and (29). The Morley, Novozhilov and Donnell equa-
tions for isotropic shells [15] are special cases of the equations (27), (28)
and (29).

Axially Symmetric Case

In this case the following equation is obtained from equations (14)

and (13):

k(1-v,v,)
172 j

[(—-2"‘“)2*—-2—— w = 2 (32)

which can be further simp]ified to
/Ei -V v27 d -y k V1Y, (l-v] 2)h
c

72 (33)

+ i
—2 12 E,c

Problems of Thin Rings and Long Tubes

When a ring is loaded by forces applied at the boundary, parallel to
the plane of the ring, the stress components are zero on both faces of the
Such a state of stress is called plane stress.

ring. Following the

procedures presented in [22]

1

(34)

where | = bh3/12, b = width of the ring, M is the bending moment (M = sz).

and w represents the rotation of radial cross sections of the ring. For
an infinitely large radius a the preceding equations coincide with that
for a straight beam.

When a long circular tube is under the action of lateral loads uniformly

distributed along the axis of the cylinder, we have a state of plane strain.

.........
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In this case, displacement along the axts of the tube u is zero and v
and w are functions of 8 only. Following the procedures similar to the
deductions of the basic equations for thin rings, the following basic equa-

tions for the bending of long tubes of orthotropic materials can be obtained:

2
dzw e 12(1-v1v2)a M2
%%-+ w=0 (35)

Thus the basic equations of the present theory contain both ring bending
and bending of long circular tubes as special cases. However, as stated in
[16], the equations for bending of thin rings and long tubes cannot be
deduced from the Donnell equations.

Comparisons and Conclusions

Utilizing the computer, the relative accuracy of the differential equa-
Pions presented previously can be further studied through numerical techniques.
This can be done by calculating the numerical values of the characteristic
roots of the equations and making a comparison of the closeness of these
roots. The elﬁstic constants of several typical orthotropic materials are
collected in Table 2. Using these values, the roots calculated from homogeneous
equations of (14) and (18) and equations (24-29) are obtained. Many roots
for other orthotropic materials have also been calculated. Similarities in
the properties of these roots for different materials can be observed. However,
due to space limitations and the fact that the same conclusions can be
drawn from different materials, only Soron-epoxy, Glass-epoxy and Graphite-
epoxy are presented in Table 3 through Table 8 for a range of significant
parameters. From all the numerical results,
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it may be concluded that the differences between the roots of equations (14),
(18) and (24) are negligibly small for all values of n and c¢. Numerical
results also show that simplified equations (25), (27) and (28) can yield
accurate solutions as seen from the closeness of the characteristic roots

of these equations to those of equations (14), (18) or (24). As is expected,
the thinner the shell, the closer in value these roots will be. The simpli-
fied equations (26) or (29), which is only one term less than equation (25)

or (28), 1s not always as accurate and dependable as other equations [16]. These

P8

two equations are apparently inaccurate in the case w = e" cosna when n

is small. Hence, special care is needed when they are employed. A1l the preceding
conclusions hold also for the case when E] and Ez, 2 and v, are

interchanged in the calculations and can be applied to laminated composite
shells. In conclusion, equations (24), (25), (27) and (28) deduced herein
have the two essential properties of accuracy and simplicity and hence are

of importance in applications.
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Table 4 Characteristic Roots (w = eP%cosnBg)
(Boron/Epoxy)
V/c n Equation Pys Py P3+ Py
(14) 2.802685 + 2.808032i 0
(18) 2.803801 + 2.809136i 0
(28) 2.803801 + 2.809136i 0
50 0 (27) 2.796462 + 2.814284i 0
(25) 2.805359 + 2.805359i 0
(28) 2.805359 + 2.805359i 0
(26) 2.805359 + 2.805359i 0
(29) 2.805359 + 2.805359i 0
(14) 2.939060 + 2.6 9594 0
(18) 2.945199 + 2,671730i 0
(24) 2.945332 + 2.671609i 0
50 1 (27) 2.853203 + 2.758317i 0
(25) 2.948208 + 2.6694311 0
(28) 2.862275 + 2,749575i 0
(26) 2.948680 + 2.670070i 0.058927 + 0.053359i
(29) 2.862805 + 2,750173i 0.057446 + 0.055186i
(14) 8. + i . 3 + 0. i
(18) 28.109206 + 27. 9980891 0.019553 + 0.019495i
(24) 28.109254 + 27.998038i 0.019553 + 0.019495i
5000 2 (27) 28.075257 + 28.0319501 0.019539 + 0.0195094
(25) 28.109475 + 27.997827i 0.019563 + 0.019485i
(28) 28.076149 + 28.031060i 0.019540 + 0.019508i
(26) 28.109477 + 27.997829i 0.022589 + 0,022500i
(29) 28.076151 + 28.031062i 0.022563 + 0.022526i
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Table 5 Characteristic Roots (w = cosnx)
(Glass/Epoxy)
1/¢ n Equation Py P, P3s Py
(14) 0.006679 + 0.006393i 0.000043 + 1.0000001
(18) 0.006684 + 0.0064061 0.000043 + 1.000000i
(24) 0.006688 + 0.0064031i 0.000043 + 1.0000001
so | o.00 (27) 0.006585 + 0.006508i 0.000043 + 0.999999i
y (25) 0.006546 + 0.006546i 0.000043 + 0.999998i
(28) 0.006546 + 0.006546i 0.000083 + 0.999998i
(25) 0.088900 + 0.036816i 0.036824 + 0.0888811
9 0.088900 + 0.036817i 0.036824 + 0.088833%
E*“'" 0.067738 + 0.063729i 0. + 1.0 i
(18) 0.067147 + 0.063739i 0.004284 + 1.000033i
(24) 0.067149 + 0.0637411 0.004285 + 1.000033i
50 0.010 (27) 0.066126 + 0.064801i 0.004285 + 0.9999234
) (25) 0.065748 + 0.0651871i 0.004287 + 0.999847i
(28) 0.065748 + 0.065187i 0.004286 + 0.999873i
(26) 0.281398 + 0.116309i 0.116559 + 0.280794i
(29 0.281363 + 0.116327i 0.116545 + 0.280837i
&1 2.738576 + 1.1932501 1.132930 + 2.884387i
(18) 2.738575 + 1,193251i 1.132931 + 2.884387i
(24) 2.738617 + 1.193267i 1.132948 + 2.884425i
5000 | ©0.100 (27) 2.738139 + 1,193649i 1.132994 + 2.884726i
) (25) 2.738452 + 1,193565i 1.133228 + 2.8842564
(28) 2.738106 + 1.193733i | 1.133074 + 2.884691
(26) 2.813983 + 1.163089i ; 1.165591 + 2.807942i
(29) 2.813632 + 1,163268i | 1.165446 + 2.808373i
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o Table 6 Characteristic Roots (w = eP’cosng)
2 (Glass/Epoxy)
§3 1/¢c n Equation Pys Py Pys Py
‘\fz
3 (14) 3.773718 + 3.784743i 0
33 (18) 3.775179 + 3.786174i 0
. - (24) 3.775101 + 3.786093i 0
. 50 0 (27) 3.757170 + 3.801267i 0
= (25) 3.779234 + 3.779234i 0
39 (28) 3.779154 + 3.779154 0
<y (26) 3.779234 + 3.779234i 0
5 (29) 3.779154 + 3.779154i 0
(9) 3.860588 + 3.6960907 0
(18) 3.862294 + 3.697873i 0
(24) 3.862230 + 3.697778i 0
50 1 (27) 3.833873 + 3.725216i 0
(25) 3.867971 + 3.692534i 0
(28) 3.856292 + 3.703559i 0
(26) 3.868686 + 3.693356i 0.078077 + 0.074538i i
(29) 3.857015 + 3.704375i 0.077861 + 0.074779i l
(13 37.826903 + 37.757/8127 | 0.026479 + 0.0264421
(18) 37.826902 + 37.757811i 0.026479 + 0.026442i |
(24) 37.826113 + 37.757011i 0.026478 + 0.0264411 }
5000 2 (27) 37.819909 + 37.763213i | 0.026479 + 0.026440i |
(25) 37.827467 + 37.757273i 0.026485 + 0.026436%
(28) 37.822116 + 37.761010i 0.026481 + 0.0264381
(26) 37.827470 + 37.757277i 0.030582 + 0.0305251
(29) 37.822119 + 37.761013i 0.030578 + 0.0305281
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Table 7 Characteristic Roots (w = e" cosna)
(Gerhitgzgpoxy

1/¢ n Equation p].p2 93.p4
(14) 0.013357 + 0.011729i 0.000158 + 1.000000i
(18) 0.013303 + 0.011695i 0.000158 + 1.000000i
(24) 0.013304 + 0.011694i 0.000158 + 1.000000i
50 0.001 (27) 0.012591 + 0.0125481 0.000158 + 0.999994i
' (25) 0.012572 + 0.012568i 0.000158 + 0.999980i
- (28) 0.012571 + 0.0125674 0.000158 + 0.999994i
% (26) 0.123248 + 0.0509921 0.051051 + 0.123106i
(29) 0.123199 + 0.051012i 0.051031 + 0.123155i§
. (14) 0.1352917 + 0.1151021 0.015698 + 1.0006077
- (18) 0.134745 + 0.1147824 0.015702 + 1.000595i
A (24 0.134744 + 0.114782% 0.015702 + 1.000595i
> 50 0.010 (27 0.127835 + 0.1234734 0.015784 + 1.000040i
: (25) 0.127839 + 0.1238444 0.015855 + 0.9985774
(28) 0.127646 + 0.123680i 0.015787 + 0.999997
(26) 0.391769 + 0.160409i 0.162270 + 0.3872681
29 0.390212 + 0.161058i 0.161632 + 0.388826i
14) 3.863535 + 1.6251971 1.598486 + 3.9282081
(18) 3.863438 + 1.625419i 1.598720 + 3.928115i
(24) 3.863425 + 1.625414i 1.598715 + 3.928103i
5000 0.100 (27) 3.847469 + 1.632947i 1.593312 + 3.943178i
: (25) 3.862934 + 1.626713i 1.599938 + 3.9275801
(28) 3.847456 + 1.632978i 1.593343 + 3.943165i
(26) 3.917688 + 1.604092i 1.622698 + 3.872768i
(29) 3.902121 + 1.1610581 1.616319 + 3.888262i

oL .. o Ny
R P A A . i



P

FTEST T RN 2 AT -

Table 8 Characteristic Roots (w = eP®cosn3)
(Graphite/Epoxy)
/¢ n Equation PysPo P3Py
(18) 1.986613 + 1.988186i 0
(18) 1.987408 + 1,988976 0
(24) 1.987389 + 1.988970i 0
50 0 (27) 1.984245 + 1.9905351 0
(25) 1.987400 + 1.987400i 0
(28) 1.987387 + 1,987387i 0
(26) 1.987400 + 1.9874001 0
(29) 1,987387 + 1,9873871 0
(14) 2.111661 + 1.854832i 0
(18) 2.119304 + 1.863529i 0
(24) 2.119284 + 1.863523i 0
50 i (27) 2.024353 + 1.9510961 0
(25) 2.120223 + 1.862897i 0
(28) 2.027557 + 1,948014i 0
(26) 2.120533 + 1.8633581 0.042075 + 0.036972i
%gg) 2.027929 + 1,948434i 0,040542 + 0.038953i
14) 19.925442 + 19.822453i 0.013807 + 0.013753i
(18) 19.925560 + 19.8225724 0.013807 + 0.0137534
(24) 19.925434 + 19.8224481 0.013807 + 0.013753i
5000 2 (27) 19.889481 + 19.858286i 0.013791 + 0.0137691
(25) 19.925642 + 19.822496i 0.013815 + 0.013744i
(28) 19.889795 + 19.8579724 0.013791 + 0.013769i
(26) 19.925643 + 19.8224981 0.015953 + 0.015870i
(29) 19.889797 + 19.857973i 0.015924 + 0,015899i
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